Kraftfeld (Computerphysik)

Ein Kraftfeld (englisch: force field) ist in der Computerphysik und verwandten Disziplinen, wie der Theoretischen Chemie, eine Parametrisierung der potentiellen Energie und kommt insbesondere bei der Beschreibung von Molekülen zum Einsatz. Wenn auf ein bestimmtes Kraftfeld verwiesen wird, so ist damit sowohl die funktionelle Form des Kraftfeldes, als auch ein spezielles (definiertes) Parameterset gemeint.

Häufig enthalten Kraftfelder Terme für Beiträge zur potentiellen Energie, die durch chemische Bindungen vermittelt werden sowie Terme für Wechselwirkungen, die nicht durch chemische Bindungen vermittelt werden:

.

Der Beitrag enthält häufig ein Lennard-Jones-Potential-Term und einen Coulomb-Potential-Term. Der Beitrag enthält häufig Terme, welche die Torsion von Bindungen, Bindungswinkel und Bindungslängen beschreiben.

Der Term, der die Bindungslänge zwischen Atomtypen der Sorte A und B beschreibt, kann z. B. die Form annehmen, wobei die Federkonstante sowie der Gleichgewichtsabstand Parameter sind. Da beispielsweise Kohlenstoffatome, je nachdem, ob eine Doppel- oder Einfachbindung vorliegt, andere Gleichgewichtsabstände und Federkonstanten haben, verwendet man zur Charakterisierung der anzuwendenden Parameter nicht lediglich Elementsymbole, sondern Atomtypen. Bei der (alleinigen) Wahl der obigen funktionellen Form zur Beschreibung der Bindungslänge wäre das Brechen von Bindungen nicht möglich. Es gibt jedoch reaktive Kraftfelder (wie beispielsweise ReaxFF), die das Brechen von Bindungen beschreiben können.

Die Wahl der Parameter eines Kraftfeldes erfolgt so, dass es in Computersimulationen bestimmte Aspekte möglichst exakt wiedergeben kann.

Kraftfelder bieten den Vorteil, dass sich relativ große Systeme modellieren lassen. Ferner kann die Aufspaltung der Energie in ihre Einzelbeiträge zum Verständnis (z. B. der Molekülstruktur) beitragen.[1] Die Genauigkeit der Beschreibung hängt allerdings entscheidend davon ab, wie gut das gewählte Parameterset zu dem zu untersuchenden System passt.[2]

  1. Norman L. Allinger: Molecular Structure. 19. Juli 2010, doi:10.1002/9780470608852 (wiley.com [abgerufen am 16. Dezember 2018]).
  2. Introduction to Computational Chemistry, 3rd Edition. Abgerufen am 16. Dezember 2018 (amerikanisches Englisch).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy